

DEFENCE & AEROSPACE TECHNOLOGIES

ATHALES Group Company

ADVANCED SATELLITE-BASED OIL SPILL DETECTION

Andrea Radius^{*1}, Rui Azevedo^{*1}, Delfim Rego^{*1}, Paulo Carmo^{*1}

*1 Edisoft, Paço de Arcos, Portugal

INSTITUTO HIDROGRÁFICO, LISBON, 24-26 JUNE 2014

ATHALES Group Company

Maritime awareness

- Ocean health is crucial for the Earth well being
- The ocean is a eco-system with major responsibility for climate, coastal erosion, etc
- Maritime pollution monitoring became an essential tool to monitor sea health and a very important challenge in terms of natural environmental preservation

Maritime Monitoring context

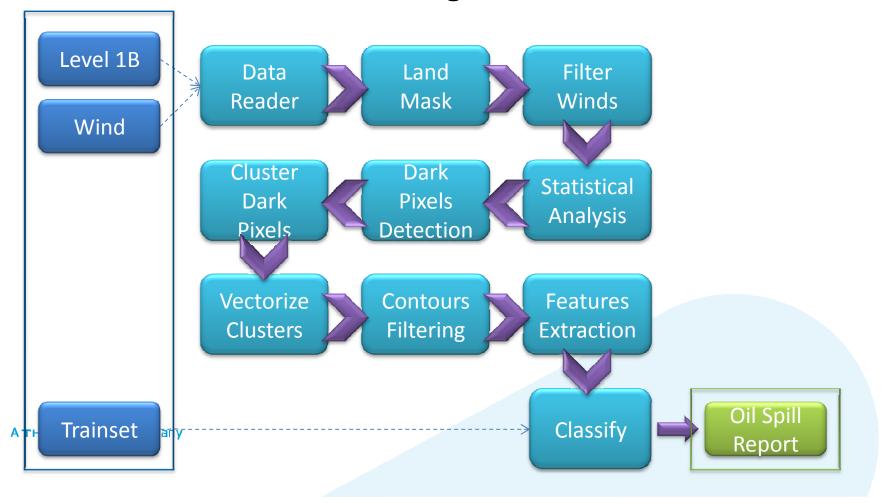
- Sea pollution monitoring importance is stressed by several European (and not only) projects that aim on sea preservation
- The synergy between R&D and operational projects is crucial to implement global monitoring architectures in the near future
- EDISOFT works on the bigger European operational project of pollution monitoring: EMSA CleanSeaNet
- Other important R&D projects which EDISOFT have worked: EC FP7 Sea-U and ESA AOSD

AOSD context

•

- The knowledge acquired during the aforementioned projects allowed EDISOFT to plan the implementation of a non-supervised automatic tool for oil spill detection
- The project involves strong R&D components to improve oil spill detection capabilities

AOSD objectives



- Convergence to an automatic algorithm
- Being closely related to the operational segment
- Focused on the oil spill detection processing chain automation (e.g. CleanSeaNet)
- Integration with an already tested and optimized software as NEST
- Integrating auxiliary data (like wind data), together with image and geometry analysis

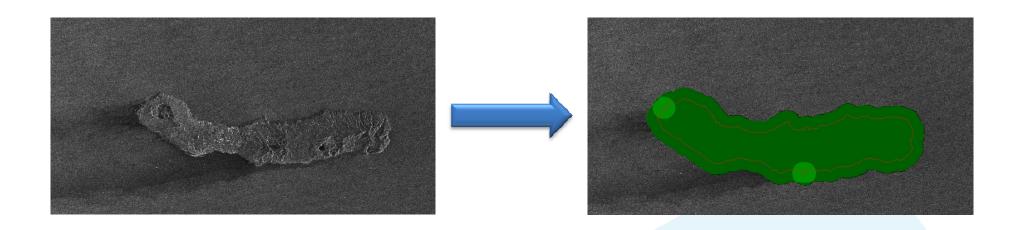
Software architecture

The AOSD follows the processing model of NEST; its architecture is the following.

Data reader

The current software version reads data acquired from the following satellites:

- Envisat
- Radarsat-1
- Radarsat-2



 Imagery data can be combined, if available, with winds ancillary data

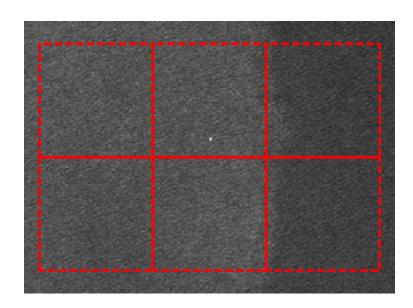
Land mask

- Land areas are masked with no data value, to be excluded by the detection component
- A user defined buffer is added to exclude areas near the coast

A THALES Group Company

Filter winds

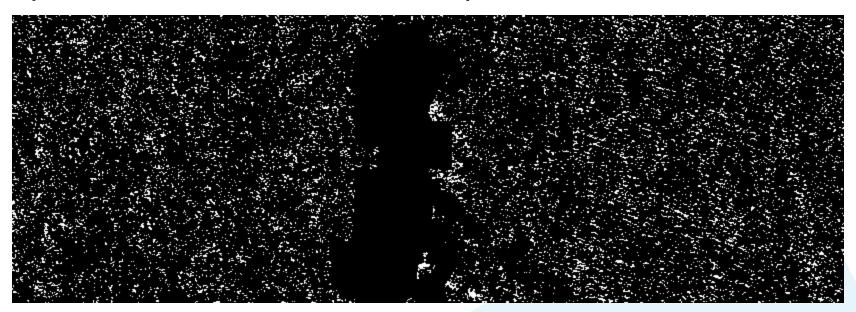
- Invalid wind areas are excluded from the analysis
- "Invalid" is defined according to the user input criteria


- Low winds lower values are excluded
- High winds higher values are excluded

A THALES Group Company

Statistic analysis

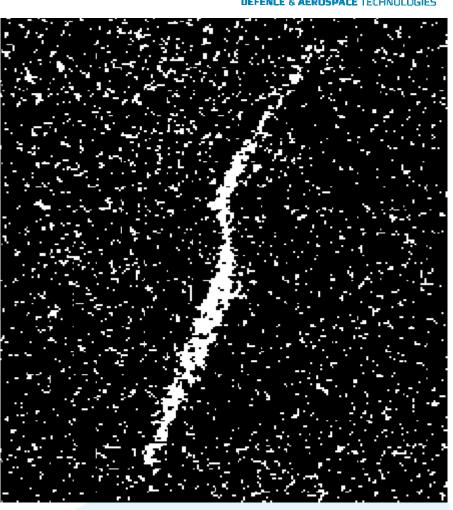
- Smaller window areas are analyzed to find individual threshold values
- Threshold values are automatically adapted to a sliding-window covering each analysed area



- Window size defined by the user
- Statistic data extraction in each sliding-window
- Threshold combining statistical data

Dark pixels detection

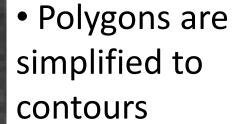
- Each pixel is filtered according to the established window threshold
- Only lower amplitude values allow the analysed pixel to move on to the next phase



A THALES Group Company

Cluster dark pixels

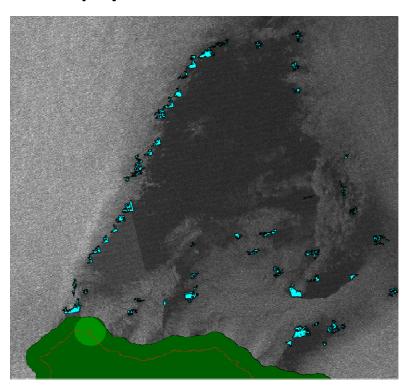
- Darker pixels are aggregated according to a user defined distance
- Each group of aggregated pixels form a cluster
- Non-clustered pixels are discarded



Vectorize clusters

• The remaining dark clusters are converted from raster to the vectorial domain

 Clusters are vectorised to polygons

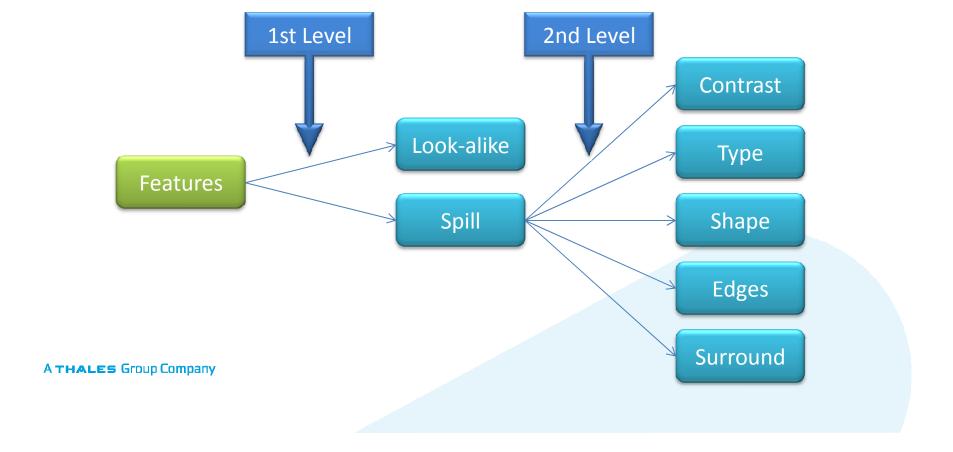


Contours filtering

• Formed contours can be discarded if they do not comply with three exclusion criteria:

- 1. Being an invalid polygon
- 2. Dimension
- 3. Closeness to an invalid wind area

Features extraction


- DEFENCE & AEROSPACE TECHNOLOGIES
- Well defined features that can better characterise an oil spill were previously chosen
- Based on the definition, the individual features of each contour are extracted
- The individual feature values are delivered to the classifier

	0.1051	o penu	0.000000000	O DEMOITY	O CONTRACT	O ODIDIENT	0.000000000	O MUDTU	O LENGTH	o i wein	C WIND
	C-AREA	C-PERIM	C-COMPLEX	C-DENSITY	C-CONTRAST	C-GRADIENT	C-SURMEAN	C-WIDTH	C-LENGTH	C-LINEAR	C-WIND _
О	2053673.34416862	12266.0404829536	73.261772402448	0.62722974111614	0.894949757498382	4.59694938686272	0.156317936692128	633.302863202606	3888.19152019553	6.13954514674541	6.23188090374385
1	774095.51842652	8060.01427919646	83.9222403882415	0.828386141936914	0.8086576863812	0.608117353575306	0.141565012976809	266.167924940337	2999.22767509399	11.2681784469946	5.06643352725289
2	1313716.46005226	6038.49658445741	27.7559443831991	0.702206319286965	0.825074369351552	0.29728451487522	0.142506326320364	727.940686394968	1804.70261465707	2.47918909931333	2.25907407478153
3	1349075.98947229	9670.97043014475	69.3272060214479	0.721327047248578	0.82830558801919	0.417040350579741	0.164647100678788	405.571647603053	3326.35675458428	8.20165012579946	8.77962250576056
4	829825.893312577	4824.74895535902	28.0519114549606	0.70496715601961	0.897991217417608	0.236059497172147	0.136922354433247	419.228095441365	1979.41383780334	4.72156770819332	3.15919385402661
5	539890.01650289	4933.53190200138	45.0827692383066	0.843921884222435	0.88741805316098	0.271743771825753	0.125806111885537	359.179036441084	1503.12229202566	4.18488313493824	2.78855267356049
6	3000031.92404144	14546.6934962438	70.5346799738713	0.742492098883821	0.831805939538005	0.337909178345755	0.158924628294606	753.431636036926	3981.82367257859	5.28491701453247	2.48531993881601
7	994939.171868004	4821.21388579633	23.3623361003612	0.593629255636903	0.881466509050831	0.246392341250764	0.127898542501826	589.103158938759	1688.90483232231	2.86690846364631	2.91797170478014
•	2137820.66542638	7955.70473443345	29.6064299709926	0.64727131811312	0.92070426341632		0.13923623908847	829.345845448059	2577.71914715677	3.10813535909635	4.28008545239767

Classify

- All detected and filtered remaining patterns are then classified based on their individual features
- Classification is done in two levels

Classify

- The first classification level is based on the Support Vector Machines (SVM). It has the purpose to classify the detected dark patch as oil spill or look-alike.
- The second level of classification is executed for the classification of the detected oil spills, with the purpose to characterize the oil spill according to its attributes

Oil Spill Report

- Available in three different formats:
 - 1. Esri shapefile
 - 2. EMSA OSN
 - 3. Google Earth KMZ

Correlation analysis

- Classification can only provide efficient predictions if the model is well balanced
- Development of a prediction model capable of classifying dark features as a spill or a look-alike
- It was essential to determine which variables are relevant to the model
- Understanding each variable relevance was performed through a correlation analysis

Oil spill characteristics

- Type linear, tail, angular, patch, droplet
- Contrast strong, medium, weak
- Surround homogeneous, inhomogeneous
- Shape smooth, irregular
- Edges Sharp, sharp and diffuse, diffuse
- Wind speed low, moderate, high

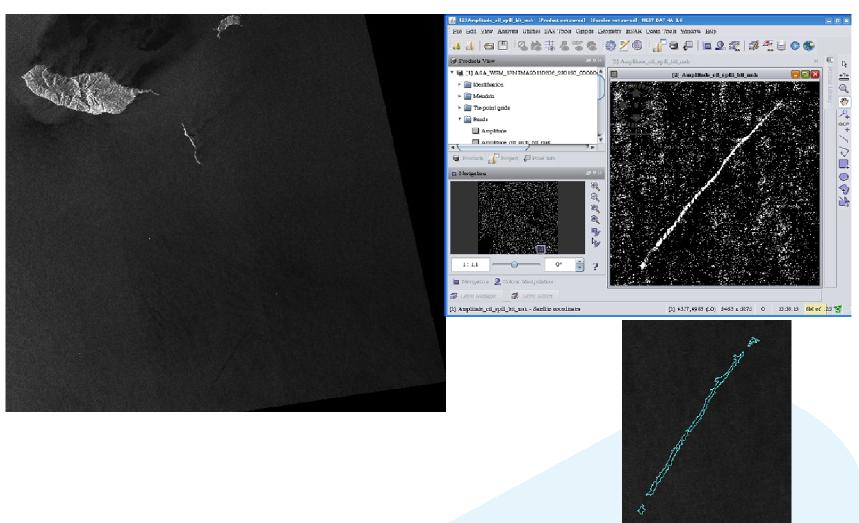
Extracted variables

- The variables are extracted according to the aforementioned oil spill characteristics
- Definition of each detection with the variables:
 - Area
 - Perimeter
 - Length
 - Width
 - Linearity
 - Complexity
 - Density
 - Gradient

Decision variable

- Spill confidence level
- Divided in five sub-level types:
 - Ongoing spill
 - High confidence
 - Medium confidence
 - Low confidence
 - Lookalike
- The variable holding the prediction result

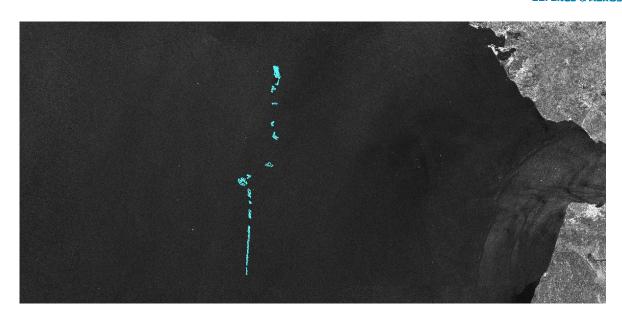
Results


- Prepared dataset based on the available archive
- Total of 78 ENVISAT scenes randomly selected
- AOSD validation data set results:

Total	High	Medium	Low	Lookalike	AOSD
18773	41	71	76	18585	Success
3147	30	58	56	3003	Fails
	58%	55%	58%	86%	Rating
86%	rformance	Overall per			

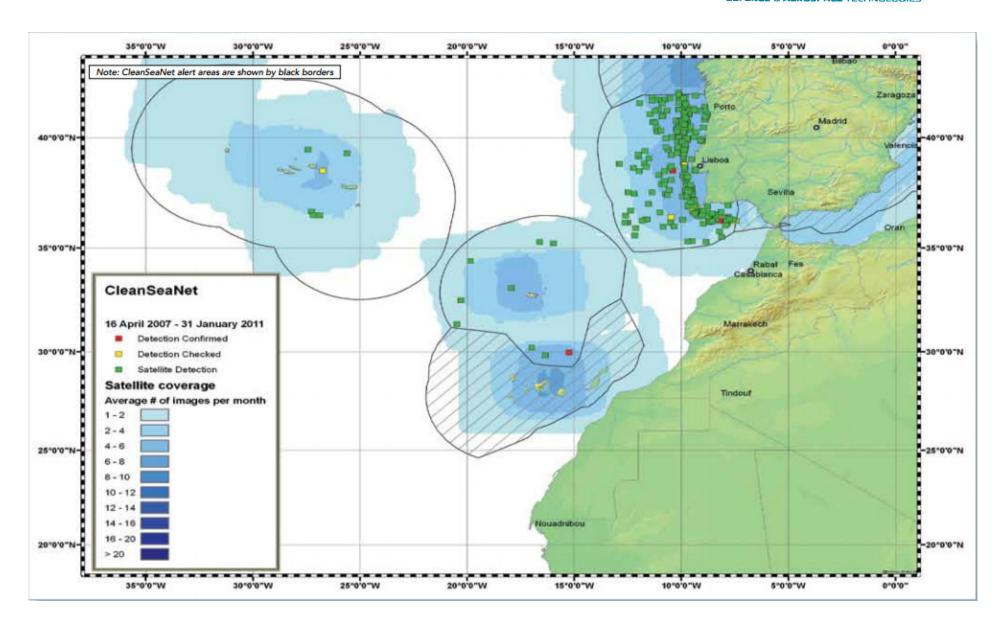
Detection example I

DEFENCE & AEROSPACE TECHNOLOGIES



A THALES Group Company

Detection example II


DEFENCE & AEROSPACE TECHNOLOGIES

CSN results (2007-2011)

DEFENCE & AEROSPACE TECHNOLOGIES

Future work

- Upgrade to the latest available version of NEST
- Integration of AOSD within the EMSA CSN service
- Integration of other SAR systems Sentinel-1, TerraSAR-X, COSMO-SkyMed
- Spill orientation to detect possible responsible ships
- Integrate other ancillary data sources to help preventing false positive detections
- Improve time efficiency to be used operationally
- Incorporate additional layers of information as detected vessels and AIS positions

THANK YOU

Rua Calvet de Magalhães, N245 2770-153 Paço de Arcos Portugal

TEL: +351 212 945 900 FAX: +351 212 945 999

www.edisoft.pt edisoft@edisoft.pt

ATHALES Group Company