

MarinEye – A prototype for multitrophic oceanic monitoring

A. dos Santos, C. Magalhães, E. Silva, C. Bartilotti, C. Churro, S. Cotrim, R. Marques, A. Silva, S. M. Leandro, and the MarinEye project team

Introduction

- ✓ To understand the marine ecosystems, it is important to know their biological, chemical, physical, atmospheric, and geological processes
- ✓ Their knowledge is severely limited by the paucity of infrastructures able to support sustained and timely acquisition of data
- ✓ Requires new and transformational approaches to ocean observation

Objectives

✓ To develop an autonomous system for integrated marine chemical, physical and biological monitoring

✓ To combine a range of technologies capable of providing data that will give an integrated view of the trophic levels with the environmental conditions

Combination of technologies in a modular, compact system that can be deployed on fixed and mobile platforms

- ✓ High-resolution imaging (targeting plankton)
- ✓ Acoustic (plankton, fishes)
- ✓ Hydrophone (mammals, noise)
- ✓ Fraction filtration systems (prokaryotes and unicelular eukaryotes)
- ✓ Sensors (temperature, salinity, dO₂, dCO₂, pH, turbidity, radiation)

Concept and approach

Biological Compartments

Autonomous Technology

Holistic approach

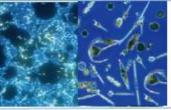
Predators

Fish Mammals

Hydroacoustic

- Active sonar
- Hydrophone

1st Consumers Zooplankton



Autonomous filtration

0.8 µm Eukaryotes **Image Detection**

Producers

Phytoplankton (Prokaryotes Eukaryotes)

Autonomous filtration

- 0.2 µm Prokaryotes
- 0.8 µm Eukaryotes Image Detection

Biogeochemistry

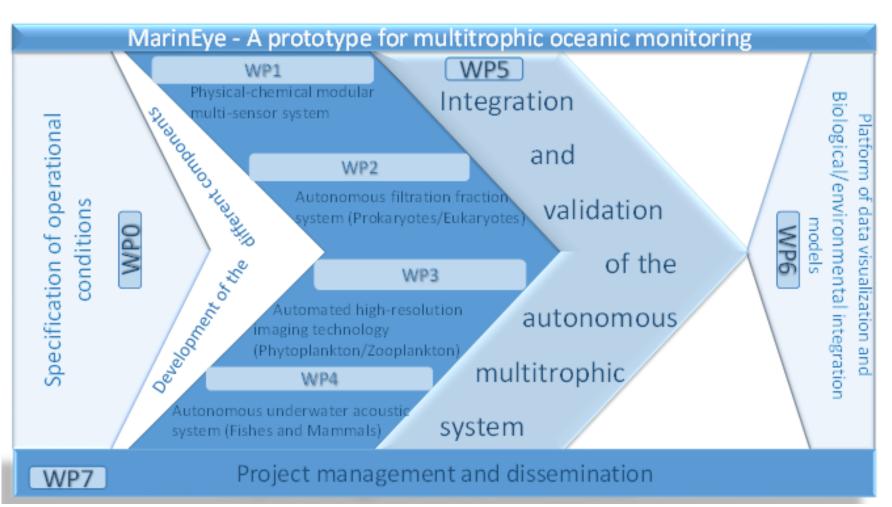
Physical-chemica parameters

Multi-sensor system Optical sensors

plementation in fixed and mobile ocean observatories

Synchronized biological and environmenta

essential information a


Provid

Structure

Organization and workflow

RAIATORY WP0 Berlengas Watch

Determine operational conditions for the modular components of the multitrophic system

Physical-chemical modular multisensor system (WP1)

Autonomous filtration fraction system (WP2)

Automated highresolution imaging technology (WP3)

Autonomous underwater acoustic system (WP4)

Specification

of operational conditions

Buoy Alfredo Ramalho RAIA Observatory

MarinEye

4as
JORNADAS
DE ENGENHARIA
HIDROGRÁFICA
21, 22 E 23 DE JUNHO DE 2018

eea grant:

Organization and workflow

WP4

Selection and adaptation of commercial sensors for:

- Salinity
- dCO
- *dO₂
- *Temperature
- *pH

- Development
 of an
 automatic bio sampler
 system
- Validation of the filtration efficiency and sample preservation
- Developmentof a planktonhigh-resolutionimagingsystem
- Adoption of imageprocessing software
- Validation of acquired data

- Selection of underwater acoustic equipment
- Equipmentadaptation toworkingconditions
- Selection and adaptation of software

WP6

WP

- Integration of the individual components in a compact system
- Benchtop validation
- Test of the different components together in a unique compact system
- Validation in the field

- Development of a centralized data infrastructure to integrate the disparate data
- Development of a software platform able to help to analyze the data generated by the autonomous system

- Co-ordination of the activities of the project
- Communication and dissemination

PORTUGAL ESTÁ A DESENVOLVER UM PROTÓTIPO PARA MONITORIZAR OS OCEANOS E PROMOVER A GESTÃO SUSTENTÁVEL DOS RECURSOS

Investigadores portugueses criam forma de vigiar oceanos

Investigadores portugueses estão a desenvolver um sistema autónomo para monitorizar os diferentes componentes dos oceanos e verificar as alterações na biodiversidade, os impactos no clima e as anomalias ambientais, o que vai permitir uma gestão sustentável desses recursos.

Investigadores portugueses criam protótipo para monitorização oceânica

ctualizado em 23 de Fevereiro, às 09:49

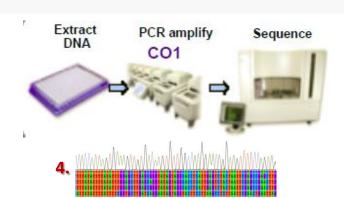
Lusa

WP3 - Automated high resolution imaging technology grants

Objective: to assess diversity and abundance of planktonic organisms with $> 50 \mu m$ through an image collection system

How?

- 1. To instal an in situ plankton imaging system
 - Camera resolution 4920 x 3264
 - Lens with 400x magnification factor
- 2. To store the images in a high-throughput data storage for further image postprocessing
- 3. To process images by an image processing software
- 4. To validate the plankton imaging data acquisition by morphological and molecular techniques
 - Cascais Watch
 - Berlengas Watch
 - RAIA


Molecular and morphology-based approach to the study of zooplankton in the Cascais Watch monitoring station

Rational

- Monitoring station (database with occurring species)
- DNA barcode protocol for zooplankton known (e.g. Bucklin et al. (2010) Deep-Sea Res II 57: 2234-2247)
- List of primers available for most of the species (database with primers list/taxon/marker)

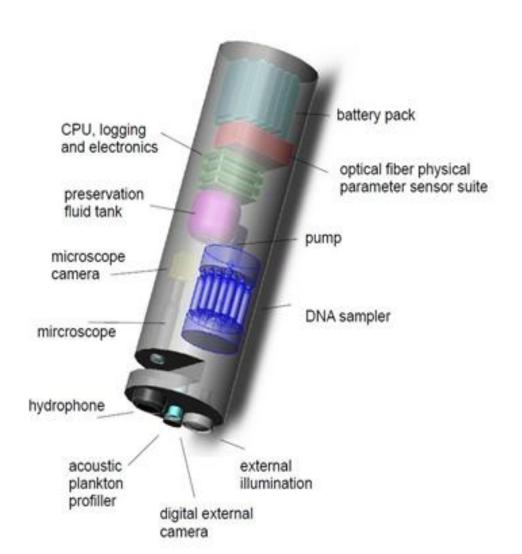
3. ICES Identification Leaflets for Plankton

Protocol

- 1. Collection and preservation of samples
- 2. Selection of specimens
- 3. Morphological id
- 4. Mitochondrial DNA barcode (658 bp COI gene "Folmer region")

Deliverables and Outputs

✓ Important contribution for the consolidation of infrastructures dedicated to the observation of the marine environment


✓ Implementation of adaptive management approaches, as the EU MSFD, allowing the development of marine strategies for the continuous assessment of the marine waters GES

✓ Multitrophic system development

MarinEye prototype and its components grants

Obrigada

