Sensing Altimeter and ASAR Wave Data in the East North Atlantic

4^{AS} JORNADAS DE ENGENHARIA HIDROGRÁFICA

Isabel Gonçalves Bué

Doutoranda na Faculdade de Ciências da Universidade de Lisboa Docente militar na Escola Naval (Navegação)

Co-authors

Álvaro Semedo, Escola Naval (CINAV) and FCUL (IDL)

João Catalão, FCUL - IDL

Lotfi Aouf. Météo-France

21st june, 2016

OUTLINE

- INTRODUCTION
 - Wave Spectra; Significant wave height; Altimetry and SAR
- RESEARCH DESCRIPTION
 - Data; Methodology
- RESULTS AND DISCUSSION
- CONCLUSIONS
- ► WORK PLAN (NEAR FUTURE)

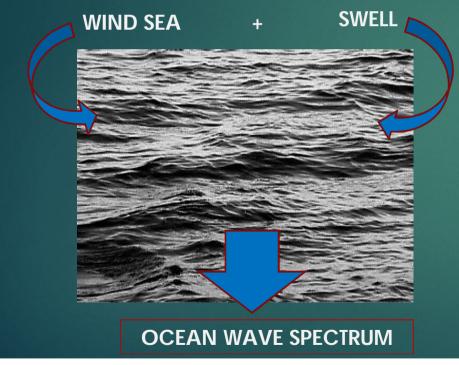
Wave Climate

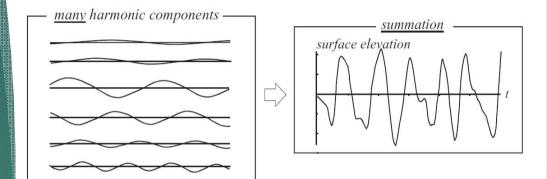
Measuring
Ocean surface waves

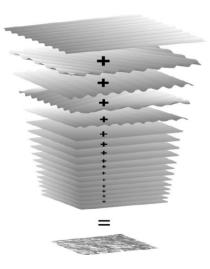
In situ ~ Buoys

- disproportional distributed
- near the coasts of industrialized countries
- located in the north hemisphere
- Time series inhomogeneity

Remote Sensing (microwave sensors)

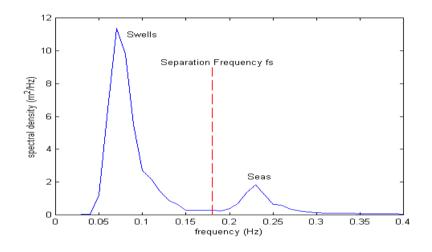

Radar Altimeters (RA)

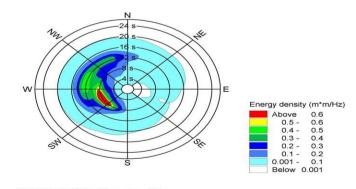

Synthetic Aperture Radar (SAR)


Wave reanalyses and hindcasts

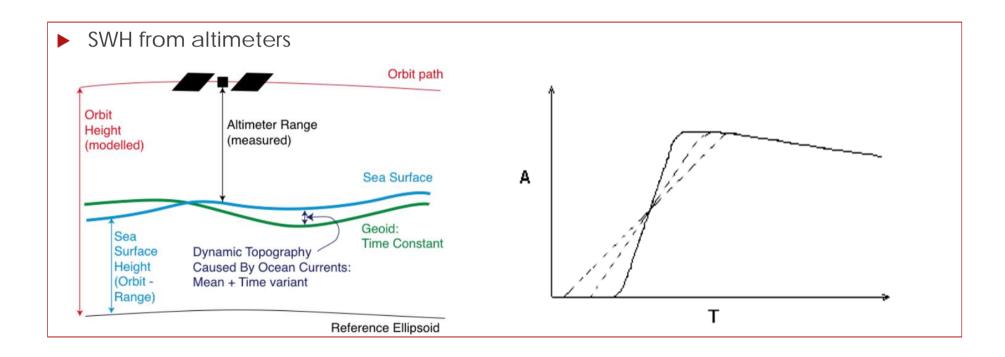
Wave spectra \sim ocean surface 2 D \sim $F(f, \theta)$ - buoy observations or SAR measurements

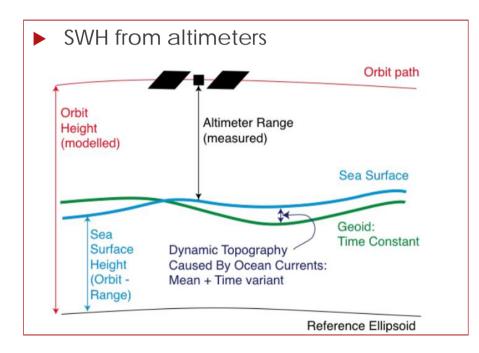
The ocean wave field is the **SUM of many WAVES**

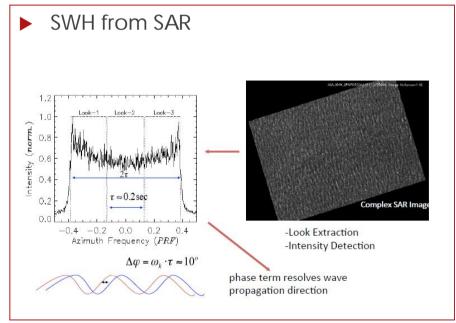



 $F\left(f, heta
ight)$ (Energy spectrum - frequency (f) and propagation direction(heta).

$$m_0 = \iint f^0 F(f,\theta) df d\theta$$


(significant wave height) – $H_{1/3} = SWH = H_s$


$$SWH = 4.04 \sqrt{m_0} \sim SWH = 4.04 \sqrt{\int F(f,\theta) df d\theta}$$



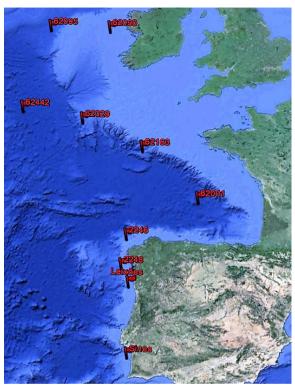
01/29/02 18:00:00, Time step: 210

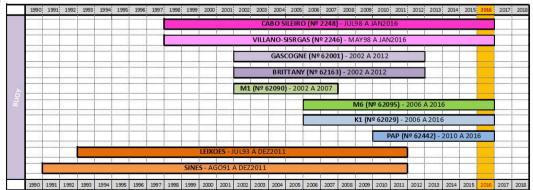
RESEARCH DESCRIPTION

STUDY

- ▶ Significant wave height (SWH) comparisons between remote sensing altimetry and Synthetic Aperture Radar (SAR)measurements and several wave buoy observations, are confronted with the ECMWF* ERA-Interim reanalysis, through a triple-collocation method.
- ▶ Different time and space resolutions for the different datasets.
- ▶ The buoy positions are the key element for the positioning of all measurements.
- ▶ The hour of the satellite overpass are the time key element the time of all observations.

^{*}European Center Medium-Range Weather Forecast

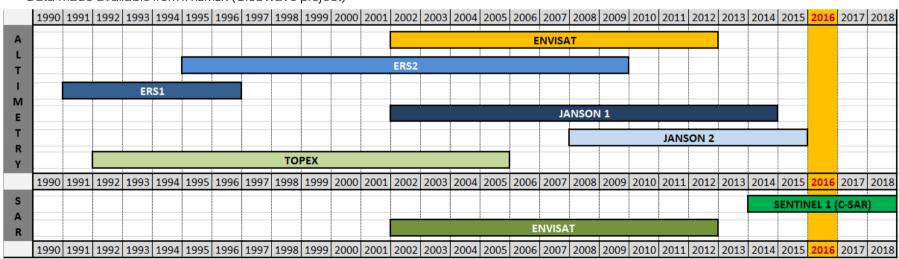

"Evaluation of Remote Sensing Altimeter and ASAR Wave Data in the East North Atlantic"


RESEARCH DESCRIPTION

DATA

Buoys observations

- Puertos del Estado (buoys 2246 and 2248);
- UK Met Office (buoys 62442 and 62029);
- Météo-France (buoys 62001 and 62163),
- Marine Institute-Met Éireann (buoys 62090 and 62095)
- Instituto Hidrográfico (Leixões e Sines buoys).



RESEARCH DESCRIPTION

DATA

Satellite measurements*

- RA (radar altimeter) sample spacing ~ 8 Km (every second)
- SAR sample spacing ~ 100 Km (wave mode, small images covering 6km x 5km to 10km x 5km and 20km x 20km)
- * Data made available from IFREMER (GlobWave project)

Isabel Bué

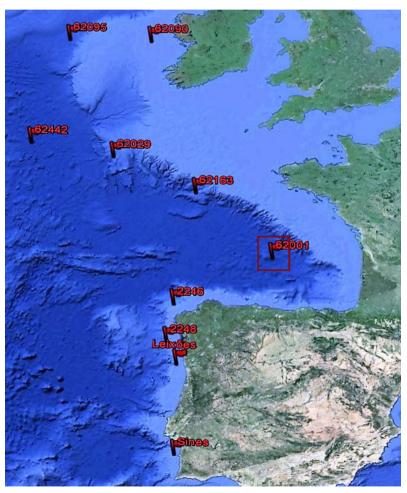
RESEARCH DESCRIPTION

DATA

ERA-Interim reanalysis*

- resolution 1° x 1°;
- 6H output;
- 2D wave energy spectrum $F(\mathbf{f}, \theta)$;
- -Altimetry wave data assimilation;
- No wave buoy data assimilated.

* Produced by European Center for Medium-Range Weather Forecasts (ECMWF).

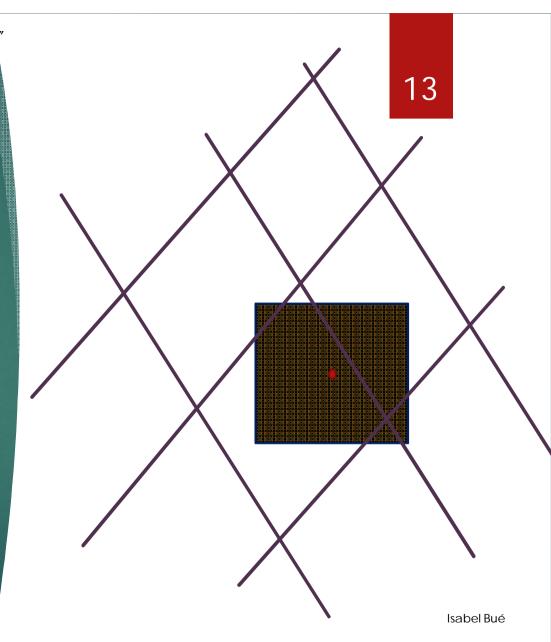

Satellite	Data (period)				
ERS-1	01 Aug 1991 to 03 Jun 1996				
ERS-2	03 May 1995 to 21 Jul 2003				
ENVISAT	21 Jul 2003 to 2012				
Jason-1	20 Oct 2003 to 2014				
Jason-2	01 Feb 2010 to 2015				

Assimilation of altimeter data in the ERA-Interim wave analysis.

RESEARCH DESCRIPTION

DATA COLOCATION METHOD

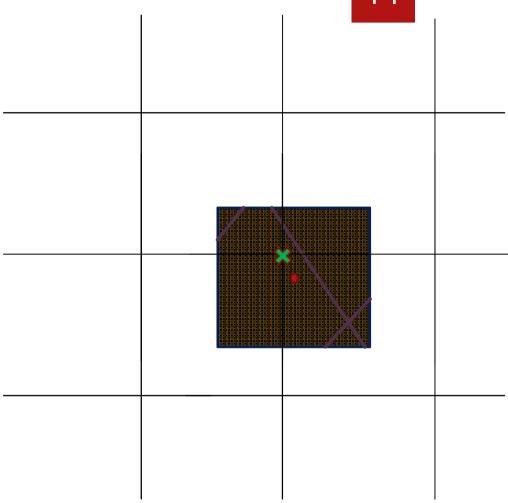
- Positioning buoy position as key element
- Time satellite overpass hour as key element
- BOX 1° (LAT) x 1° (LON)


"Evaluation of Remote Sensing Altimeter and ASAR Wave Data in the East North Atlantic"

RESEARCH DESCRIPTION

DATA COLOCATION METHOD

- BOX 1° (LAT) x 1° (LON)
- RA sample spacing ~ 8 Km (every second)
- SAR sample spacing ~ 100 Km


(wave mode, small images covering 6km x 5km to 10km x 5km)

RESEARCH DESCRIPTION

DATA COLOCATION METHOD

- Positioning buoy position as key element
- Time satellite overpass hour as key element
- Time lagging
 - Buoy versus sensor measurements ~ 30 minutes
 - ERA-Interim versus satellite overpass > 30 minutes (but < 3 H)
- * ERA-Interim reanalysis output at synoptic hours

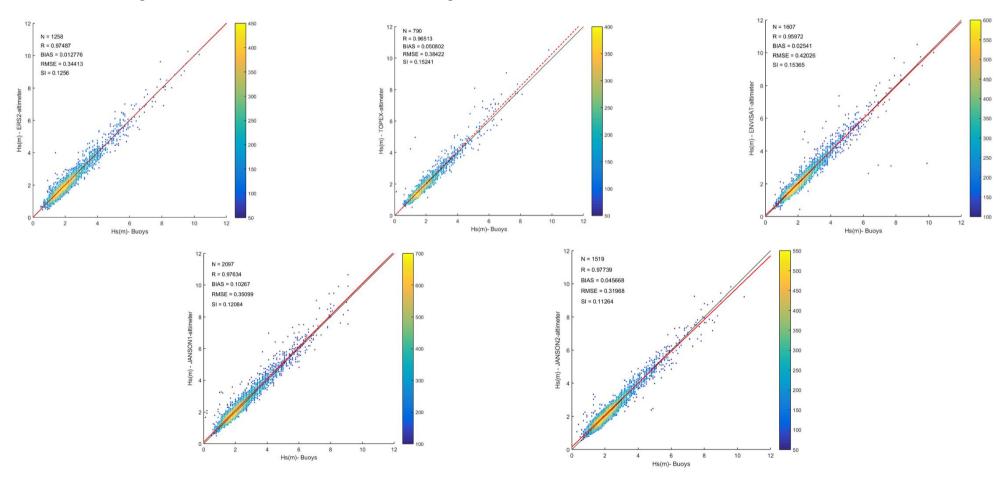
RESEARCH DESCRIPTION

STATISTICS

$$R = \left(\frac{\sum_{i=1}^{N} (s_i - \bar{s})(b_i - \bar{b})}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (s_i - \bar{s})^2} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (b_i - \bar{b})^2}}\right)$$

$$RMSE = \left(\sqrt{\frac{1}{N}\sum_{i=1}^{N}(s_i - b_i)^2}\right)$$

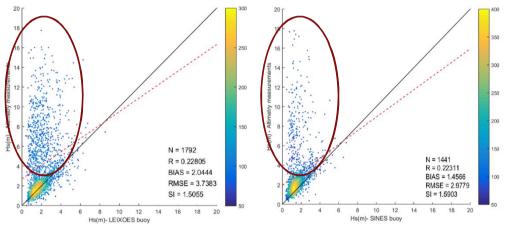
$$BIAS = \left(\frac{1}{N} \sum_{i=1}^{N} (s_i - b_i)\right)$$


$$SI = \left(\frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N} \left[\left(s_{i} - \bar{s}\right) - \left(b_{i} - \bar{b}\right)\right]^{2}}}{\bar{b}}\right)$$

Altimeter versus buoy SWH (Leixões and Sines buoys not included).

Satellite (altimeter)	N	R	Bias (m)	RMSE (m)	SI
ERS2 (1995-2009)	1258	0.9749	0.0128	0.3441	0.1256
TOPEX (1992-2005)	790	0.9651	0.0508	0.3842	0.1524
ENVISAT (2002-2012)	1607	0.9597	0.0254	0.4203	0.1536
JANSON1 (2002-2014)	2097	0.9763	0.1027	0.3509	0.1208
JANSON2 (2008-2015)	1519	0.9774	0.0457	0.3197	0.1126

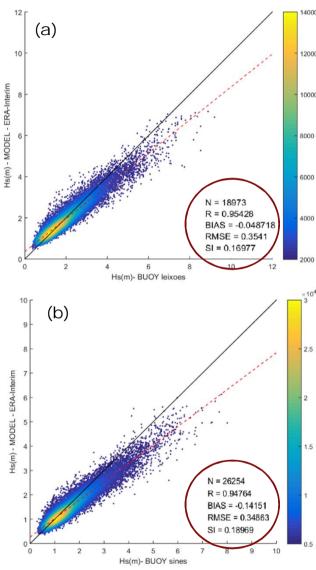
Statistics results – all buoy data (exception made for Leixões and Sines buoys) compared with each Altimeter sensor.


- Altimeter vs. buoy SWH* (Leixões and Sines buoys not included).

^{*} All buoys data compared with each Altimeter sensor

Altimeter versus Leixões and Sines buoy SWH measurements.

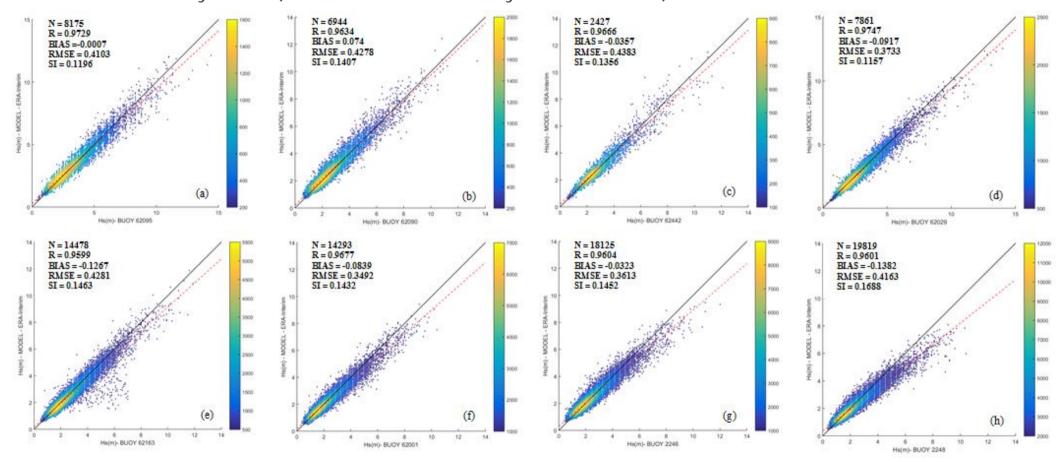
* All altimeter sensors compared with Leixões and Sines buoy SWH


Scatter plots - Altimeter vs. Leixões and Sines buoy SWH.

Satellite (altimeter)	N		R		Bias (m)		RMSE (m)		SI	
	Leixões	Sines	Leixões	Sines	Leixões	Sines	Leixões	Sines	Leixões	Sines
ERS1 (1991-1996)	45	54	0.755	0.298	-0.082	1.283	0.974	2.847	0.345	1.515
ERS2 (1995-2009)	269	293	0.489	0.164	0.529	2.088	1.379	4.573	0.645	2.525
TOPEX (1992-2005)	445	384	0.255	0.744	2.690	0.699	3.654	1.015	1.224	0.437
ENVISAT (2002-2012)	324	315	******	*********	2.546	3.425	4.822	4.766	2.068	2.154
JANSON1 (2002-2014)	457	309	0.289	0.575	0.859	0.702	2.654	1.083	1.161	0.497
JANSON2 (2008-2015)	234	110	0.197	0.772	4.678	1.102	5.724	1.309	1.545	0.426

Statistics - Altimeter vs. Leixões and Sines buoy SWH.

RESULTS AND DISCUSSION


- ERA-Interim versus Leixões and Sines buoy SWH.

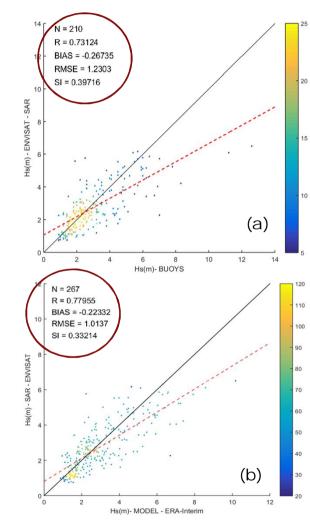
Scatter plots: (a) Leixões buoy and (b) Sines buoy.

Isabel Bué

- ERA-Interim vs. buoy SWH* (Leixões and Sines buoys not included)

^{*} Scatter plots: (a) 62095 buoy, (b) 62090 buoy, (c) 62442 buoy, (d) 62029 buoy, (e) 62163 buoy, (f) 62001 buoy, (g) 2246 buoy and (h) 2248 buoy

Isabel Bué


"Evaluation of Remote Sensing Altimeter and ASAR Wave Data in the East North Atlantic"

RESULTS AND DISCUSSION

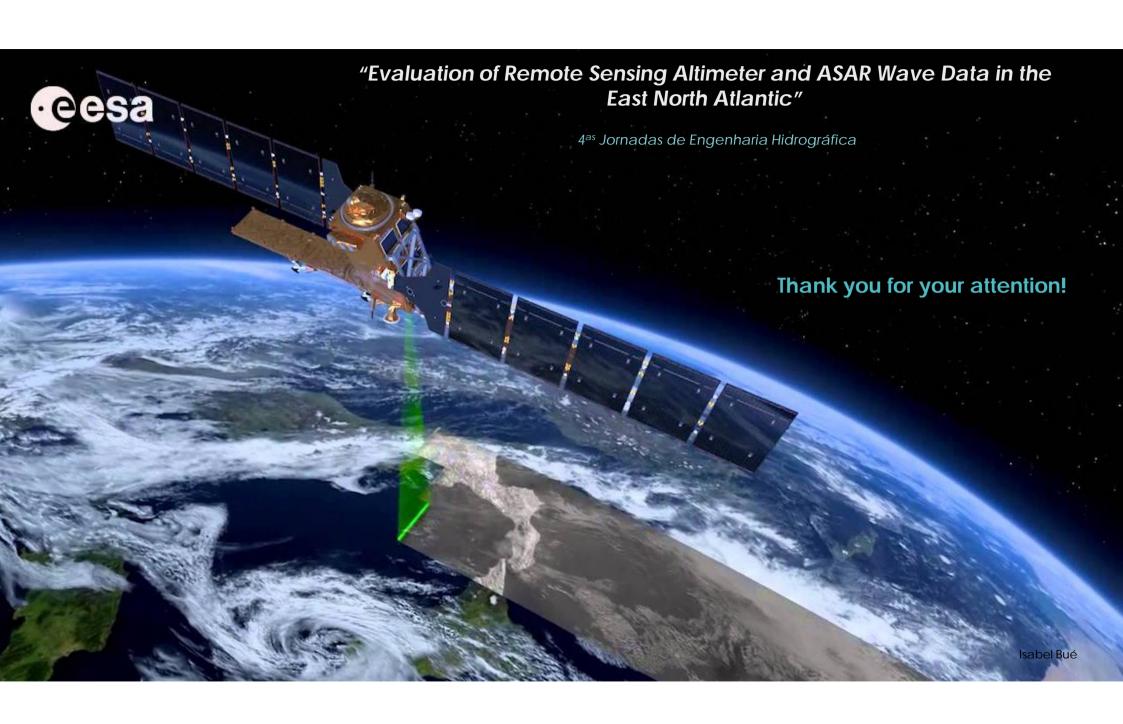
RESULTS AND DISCUSSION

- SAR versus buoys SWH; and
- SAR versus ERA-Interim.

- * SAR data only from ENVISAT mission
- ** All buoy observations vs. SAR

Scatter plots: (a) SAR versus buoys and (b) SAR versus ERA-Interim.

CONCLUSIONS


- ► Altimeter and SAR wave observations (SWH) were compared with buoy observations and reanalysis data. The buoy positions were the center of the 1°x1° sampling boxes.
- ▶ The comparison between the altimeter SWH and the in situ measurements showed very good agreement, exception made for Leixões and Sines buoys
 - Altimetry low performance in coastal areas.
- Despite the fact that SAR SWH neglects the high frequency waves, these wave estimations showed some agreement with buoy observations that would most probably be better if only the swell SWH had been compared
 - Complex wave spectra extraction algorithms.

FUTURE WORK

- ► Compare the Sentinel-1 C-SAR SWH measurements with buoy observations, and assess the goodness of incorporating SAR spectra into modeled wave spectra.
 - Altimeter, SAR, and reanalysis wave data will be collocated into buoy positions (triple-collocation method)
- Investigation main goals
 - SWH altimeter versus buoys;
 - SWH swell SAR versus buoys;
 - SWH ERA-Interim versus buoys and SAR;
 - SAR spectra incorporated in ERA-Interim
 - ERA-Interim spectrum "corrected";
 - SWH (re)calculated from ERA-Interim;
 - "new" SWH compared again with buoys.

FUTURE WORK (short term)

- ▶ Apply the triple-collocation method to estimate the absolute errors of the different datasets.
- ▶ Optimal interpolation of 2D SAR wave spectra with ERA-Interim spectra (the reassimilation post-processing process).
- ▶ The SWH computed from the corrected spectra will further be collocated and compared with buoy observations and altimeter SWH measurements, as well as with the original ERA-Interim SWH, to assess the goodness of the spectral correction model.
- ► Follow this method for existing SAR observations (used in this study) but also with data soon to be available from the C-SAR Sentinel-1 and Sentinel-3 Radar Altimeter.

